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1 Introduction

Our scientific goal is to understand the process of human decision-making. Specifically,

we seek a model of human decision-making in piloting modern commercial aircraft

which prescribes optimal behavior, and against which we can measure human sub-op-

timality. This model should help us understand such diverse aspects of piloting as

strategic decision-making, and the implicit decisions involved in attention allocation.

Our engineering goal is to provide design specifications for (i) better computer-based

decision-aids, and (ii) better training programs for the human pilot (or human deci-

sion-maker, DM).

2 On Models

2.1 Desirable Attributes of a Model

The following is a list of desirable properties of a model:

(i) Predictive Ability -- A model should allow accurate prediction of the im-

portant behaviors of the modelled system 1. This is the defining property of
a model.

(ii) Generality m To be broadly applicable or general, a model must be based on

the internal structure of the situation or object being modelled. General

models should have the desirable property that new behaviors can be pre-

dicted with only small changes to the model, such as parameter changes.

(iii) Simplicity -- Occam's razor, the principle that the simplest of competing

theories should be preferred, suggests that simple models are more general.

Because this is the opposite of complexity, it might best be measured using

the notion of Kolmogorov Complexity 2. Alternatively, the number of pa-

rameters which must be specified might be used as a measure of complexity.

(iv) Normativity _ We desire a model which specifies "optimal" behaviour in

the process being modelled.

1 This is possible with aircraft because they have relatively simple and well-understood dynamics. However,
prediction of pilot behavior is difficult. However, the supervisory'behavior of modern pilots is inherent!y, nonlinear
and comvlex, so that systems containing a human pilot will exhibit chaotic behavior. Complex models of tills Denawor
will do the same, making prediction diirficult or impossible. By this, we mean that although statistical p redic.ti'ons will
be possible, for instance we will be able to estimate on what traction of flights in given conclitions a l_lOt win choose
Y, we will never be able to predict the outcome of a particular decision at the end o'f a particular flight.

2 See Yufik, Y.M. & Sheridan, T.B.; A Technique to Assess the Cognitive Complexity of Man-Machine Interface.

Philadelphia, PA; Institute of Medical Cybernetics. p. 23.
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(v) Tractability m We desire a model which is susceptible to mathematical anal-

ysis 3.

A model which is general, simple, and tractable, might be said to be insightful: capable

of conveying insight into the behavior of a system.

Neural-networks (NN's) fare better against some of these criteria than against others.

Although excellent for prediction, NN's convey very little insight into the process being

controlled (neither are they simple), or the nature of the decisions being implemented.

Also, they do not have the first desirable property: generality m they cannot easily be

tuned, they must be retrained.

Econometricians commonly use models which do not posses all of these properties: re-

gression models of the economy are easy to construct and often have good predictive

power, but they are usually not general.

2.2 Testing Models

2.2.1 Testing against an Objective Function

Humans are required in these strategic situations because the decision-making cannot

be automated. Since we have no objective function with which to automate, we have

no normative model against which to evaluate the optimality of the human subject's

decisions. This has been called Roseborough's dilemma 4. We don't know which

choices people should be making because we can't compare the values of the choices

without a utility function. Any such utility function must usually be derived from

these same choices. This is a circular procedure.

2.2.2 Testing using Consistency

However, there are objective methods of testing the predictive ability of a model. They

involve testing the following three types of consistency:

(i) Consistency within the training set _ how well the model fits the data used
to build its;

(ii) Consistency within the subject _ how well the model fits extra data taken

from the same subject (this can be extrapolative or interpolative);

(iii) Consistency across subjects m how well one subject's model predicts the be-

haviour of other subjects .

3 Rule-basod models cannot do this well.

4 Roseborough, J.B. "Aiding Human Operators with State Estimates". Ph.D. Thesis, 1988, M.I.T., Cambridge, MA.

5 Taking into account the number of degrees of freedom available in the model -- the fewer parameters, the more
significant this consistency is.
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We propose that the extent to which human or machine decision-makers are inconsis-

tent is a measure of their sub-optimality. Several candidate measures of inconsistency

might be used. Among them are (i) the number of errors made by an expert system, (ii)

a measure of the lack of symmetry embodied in an expert system's decision rule s.

A method which can be used to augment this approach is to take some cardinal subjec-

tive measures (e.g. the subjective degree-of-difference between the alternatives) as

each decision is made by the subjects, and compare these with measures taken from the

models. This technique should make assessment of the models easier than purely

ordinal data (e.g. the alternative chosen) do.

3 Models of Decision-Making

3.1 Types of Decision

Philosophically, decisions may be divided into three types:

(i) Value-based [optimal] decisions m in which an objective [perhaps utility]

function is maximized;

(ii) Rule-based decisions D in which a learned rule is applied without direct at-

tention to the values of the possible outcomes;

(iii) Random decisions -- these are not quite decisions, just random apparent
choices.

The first two of these types, optimal and rule-based decisions, bracket a spectrum of de-

cision models. It is worth noting that even though rule-based decisions employ no im-

mediate notion of value (by definition), they are optimal only to the extent that they are

learned from optimal decisions. Any theory of decision-making needs to take into ac-

count the concurrent use of each of these three decision-making strategies.

An interesting idea is that people learn no___2tto make utility-based decisions, by learning

simple rules which can be applied in their place. In other words, with experience they

learn to substitute rule-based decisions for value-based decisions. This idea might be

applied to the process of choosing between control strategies 7.

3.2 Applications for Decision Theory

We are pursuing a two-pronged approach to modelling human decision-making, with

application to piloting. The first involves assessment of the values or features used in

comparing the alternatives in a decision. The second involves the application of deci-

sion theory to a dynamic task.

6 The decision used in these experiments should be symmetric -- that is to say insensitive to the order in which the

alternatives are presented.
7 To demonstrate this we would need an experiment in which subjects can be shown to reject utility-maximization in

favor of some other, specific decision rule.
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3.2•1 Strategic Decision-Making

Of obvious interest in aviation is the application of decision theory to the modelling of

strategic decision-making, in which pilots choose between goal alternatives. Here,

value might be assigned to each of the alternatives, and a maximization scheme like

Subjective Expected Utility (SEU) might be used to model the choice between them. The

experiment described in Section 4 is designed to examine this process.

3.2.2 Dynamic Attention Allocation

We would also like a model of pilot's attention-switching behavior between control

and monitoring tasks in a dynamic environment, as suggested in Figure 1. For this we

might again invoke a utility-maximization model, like the explicit-cost model in

Equation 1 below:

i

I PtXl)J

[1]

where x i are the possible states of the world, p(x i) is the probability of occurrence of a

particular state, u; are the possible control actions, V(u_xi) is the value associated with
J

the application of control action uj to situation xi, and c(x i) is the explicit cost of one bit

of information about state x i.

Figure 1: The pilot controlling information and control automata, and sampling aircraft

state directly. The competing resource sinks of autopilot and decision-aid attention alloca-

tion are shown by the heavy dashed lines.
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However, this model requires a utility function on the entire space of possible out-

comes xi. This is hard to obtain [perhaps unattainable] in a flying environment, where

the values and probabilities, particularly of the rarest and most extreme outcomes, are

usually unknown, and never explicitly stated 8. This is in contrast to prices in an eco-

8 So-called optimal control cannot be strictly optimal, since it relies on quite arbitrary cost-functions.
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nomic market, which - because of trade between individuals - are usually available ex-

plicitly 9. For example, in an economy, labor and capital are commonly exchanged be-

tween corporations, thus explicit prices for both must be made available. The in-flight
decisions in which we are interested involve non-tradable attributes of the DM's situa-

tion. For instance, a pilot cannot trade his aircraft's altitude for the airspeed of another

aircraft, and thus no market with associated explicit prices exists for these attributes. In

this sense, flying involves situations, rather than goods 1°.

One method of bypassing this problem would be to assign costs and rewards for all pos-

sible outcomes in an experiment. With this externally-imposed utility function, we

would be able to examine the optimality of the subject's decisions, but not the process

by which he values the alternatives. If we don't understand this process, we will not be

much closer to understanding decision-making. We might try to elicit a utility func-

tion for decision-making from the subject, or we may use some other [feature-based] cri-

teria in our model.

A decision model should shed some light on the process by which pilots allocate their

limited attention resources between tasks in the cockpit. For instance, pilots must

choose between controlling the aircraft through the autopilot and manipulating deci-

sion aids (such as the FMS or other navigation equipment) to provide information rel-

evant to the control task. Figure 1 above shows these two competing tasks. A second

experiment (described in Section 8) is designed to focus on this application of decision

theory.

4 Strategic Decision-Making Experiment

In this experiment, experienced pilots were instructed to imagine themselves on a long

cross-country flight in Instrument Meteorological Conditions (IMC) in a particular air-

craft 11, when the destination airport became unusable for a non-weather-related reason.

The conditions for the flight (e.g. no thunderstorms, unlimited visibility below the

overcast, etc.) were specified as completely as possible.

Each subject was instructed to choose between about three dozen pairs of alternates

based on the distance to, and the ceiling at, each alternate. For example, subjects might

have chosen the second airport from the following pair: [200 n.miles, 1000 feet] vs. [50

n.miles, 500 feet]. The subjects were also asked to indicate the subjective "degree of dif-
ference" between the alternates on a numerical scale of 0 to 7. Each subject's utility was

assessed 12 independently from the paired comparisons. Subjects were given a scale

with anchor points ([worst ceiling, worst distance], and [best ceiling, best distance]) al-

9 Price is onl 3, a crude substitute for utility, because it reflects the averaging of utilities from many individuals, both
large and small.

10 One wa_, around this problem might be to create an artificial market for these attributes. In an experiment, _veral
pilots might fly aircraf_ in different situations concurrently, and be allowed to trade these attntmtes over the ramo.

1 1 The subjects were asked to imagine that they were in the aircraft they usually fly.
12 After Yntema, D.B. and Klem, L.; "Telling a Computer How to Evaluate Multidimensional Situations"; IEEE

Transactions on Human Factors in Electronics, Vol. HFE-6, No. 1; June 1965.
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ready marked, and instructed to mark on it the two intermediate points ([best ceiling,
worst distance], and ([worst ceiling, best distance]) in such a way that the distance up the

scale was proportional to the desirability [safety] of the alternate. They were then given

subsidiary scales for distance and ceiling (again with anchor points) and instructed to

mark the intermediate points on each scale in the same way.

Figure 2: The experimental situation, as presented to the subjects. The alternates are lo-

cated so as to be equally inconvenient for travel to the ultimate destination.

Destination AIt. 2

AIt. 3
Air 4

You

Figure 3: Utility as a function of the two independent variables of the experiment: normal-

ized range-remaining and ceiling. [subject R]

I I

C (R-d)/R

0
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5 Decision Models

Several types of decision model were applied to the data extracted from the subjects in

the experiment above. A utility model was applied to the decisions, and 3 types of dis-

criminant-function model were applied to both 2- and 4-dimensional incarnations of

the decisions.

5.1 Utility Model

Figure 4: Contour plots of utility for the 4 subjects as a function of the two independent vari-

ables of the experiment: normalized range-remaining and ceiling. In each plot, U=0 in the

lower left corner, and U=I in the upper right comer. Contour lines are at a spacing of
AU=0.t.
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A quasi-separable utility function, as defined by Keeney 13, was used to fit the corner

points of the first Ccorner-point") direct-assessment scale:

13 Keeney, Ralph L.; "Evaluating Multidimensional Situations Using a Quasi-Separable Utility Function"; IEEE
Transactions on Man-Machine Systems, Vol. MMS-9, No. 2; June 1968.

Human-Machine Systems Lab, MJ.T. 9 _,,,_, 1993



U(x, y) = a + bU(x,O) + cU(O,y) + dU(x,O)U(O,y) [2]

with constants a, b, c, and d chosen so that U lies on the range [0,1]. The component util-

ities, U(x,O) and U(O,y), were measured directly from the points on the subsidiary scales,

and linear interpolation was used between these points in evaluating the utilities of the

alternates. The distance variable, x, was normalized with aircraft range.

This method of utility evaluation was used to determine utility as a function of both

ceiling and distance variables. Figure 3 shows a typical utility function.

5.2 Discriminant-Function Models

It might be possible to discriminate between alternatives in a decision by using linear

combinations of the alternatives' attributes, rather than subject-dependent non-linear

functions of the attributes, as the utility method does. To examine this possibility, sev-

eral linear discriminant-function models were tested on the data. Each attempts to fit a

hyperplane (fiat surface) between the two classes of decision points (those in which the
first alternative was chosen, and those in which the second alternative was chosen).

5.2.1 Perceptron Algorithm

A perceptron is a very simple neural network. The perceptron algorithm is guaranteed

to converge for small enough step sizes, if the data are linearly separable.

Figure 5 A Perceptron, or single-element neural network, which can be trained to find a dis-
criminant hyperplane to fit the binary, forced-choice decisions.

xl

x2

x;
×°

Y

The algorithm was written in LISP, and run with each of the subjects' decisions as train-

ing sets. To examine the possibility that the DM's might use fewer than the 4-dimen-

sions available to them in each decision (rl, cl, r2, c2), the algorithm was rerun in 2 di-

mensions for each subject. The two dimensions used were:

r' = r_ - r 2, c' = c, - c2 [3,41

The discriminant functions obtained for these two-dimensional cases (see the explana-

tion below) are shown as solid lines in Figure 6 below.

December, 1993 10 Human-Machine Systems Lab, MJ.T.



5.2.2 Closed-form Discriminant Algorithm

Observe in Figure 6 that the discriminant functions determined by the perceptron algo-

rithm vary widely from subject to subject. This is because the algorithm is very sensi-

tive to individual data points. In an attempt to find a more general model of the deci-

sion-making, a less sensitive closed-form algorithm was designed. The means and

standard deviations (in each dimension) of both data groups were calculated, and a dis-

criminant hyperplane was constructed so as to be normal to the line connecting the two

means, and to pass through that line at some fraction along its length, determined

using the standard deviations of the groups. These functions are shown in Figure 6 as

dash-dotted lines. The large difference in the slope of the closed-form line and the

slope of the perceptron line is explained below.

Figure 6: Plots of 2-dimensional decisions (reduced from 4-D by subtraction) for the four sub-

jects. Difference in Ceilings is plotted against difference in normalized range. The percep-

tron discriminant functions are shown by the solid lines, the closed-form discriminant func-

tions by the dash-dotted lines, and the improved closed-form discriminant functions by the
dashed lines 14.
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14 Subject D's responses are noticeably different from the others'. That subject was unsupervised for the duration of the
experiment.
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5.2.3 An Improved Closed-form Discriminant Algorithm

The above algorithm does not perform particularly well (see Figure 6 and Table 1),

because it does not take into account the difference in spread of the data along the two

axes. Since units of measure are quite arbitrary, any algorithm which relies on them for

the scaling of its axes is likely to be biased. For example, if ceiling is measured in feet,

rather than in thousands of feet, the importance of ceiling in the decision will be

exaggerated by a factor of 1000. This problem would disappear if both axes were normal-

ized to lie on the range [0,1]. Alternatively, the angle of the discriminant plane can be

adjusted to reduce this bias. Figure 7 below shows why this improvement to the closed-
form discriminant-function model works.

Figure 7: Two plots of the 2-dimen-
sional decision. On the left, the deci-

sion as it appears if the axis are
scaled in accordance with their

ranges -- values along the x-axis
vary from -1 to +1. Since units of mea-

sure are arbitrary, this can exagger-
ate one dimension of the decision. On

the right, the decision as it appears

if the axes are scaled equally. This
seems more realistic. The standard

closed-form discriminant function is

shown in both as a dash-dot line, the

improved closed-form discriminant
function as a dashed line, and the

perceptron function as a solid line.

Notice how the improved function

separates the two cases more effec-

tively than the original closed-form
function.
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This improved algorithm was run on the 2-D and 4-D data from each subject.
results are summarized in the tables below.

The

6 Comparison of Results

Following the argument - presented in Section 2.2 - that we have no objective mea-

sure of the quality of a decision, we will use consistency as a proxy for optimality.

6.1 Within-Subject Consistency

Table 1 below shows the percentage of decisions for which the expert system and the

human subject did not agree. Note that we can not say "the percentage for which the

expert system erred" any more than we can say "the percentage for which the human

erred". All we can examine is consistency. First observe that for the 2-D and 4-D

Dzr.tmber, 1993 12 Human-Machine Systems Lab, Md.T.



discriminant function models, the Perceptron algorithm produced the best results.

This is not entirely surprising because it's only goal is the reduction of the number of

classification errors 15, whereas the other models could be said to be reducing the size of

the errors. Second, in the 2-D case, the improved closed-form algorithm ("Closed Form

2") did a better job than the original closed-form algorithm for every subject's data.

Note, however, that for the 4-D case it did no better. This is somewhat surprising, and
warrants further examination.

Table 1: Percentage errors made by several different expert systems mimicking the deci-

sion-making of the 4 subjects: utility data from Yntema-Klem style experiment; number

(and percentage) of perceptron discriminant-function errors; number (and percentage) of

closed-form discriminant-function errors; Experience (hours total time) and age (years).

The subjects made [31,36,33,30] decisions.

Subject D H P R Average

Utility Model 29 % 14 % 6 % 13 % 16 %

Perceptron 23 % 6 % 3 % 0 % 8 %

4-D Closed Form 42 % 33 % 12 % 23 % 29 %

Closed Form 2 42 % 33 % 18 % 23 % 29 %

Perceptron 26 % 14 % 3 % i0 % 13 %

2-D Closed Form 48 % 36 % 21% 27 % 33 %

Closed Form 2 36 % 31% 18 % 20 % 26 %

Total Time (hrs) 420 4200 280 480 1345

Age (yrs) 25 37 21 28 28

Third, note that the Utility model is not as good as the perceptron algorithms for any of

the subjects 16, but is better than any of the other models for every subject. The results

for the utility function are slightly biased because we used separate cardinal [ratio] util-

ity data to obtain the utility function, whereas we only used the training-set data for the
other models.

6.2 Between-Subject Consistency

Table 2: Within-subject and between-subject error rates of the seven models. Each model

was applied to each data set without any parameter adjustment, except that in each case
distance was non-dimensionalized. The ratio of the two rates (between/within) is shown.

Model Within Between Ratio

Utility 15.6 % 23.6 % 1.5

Perceptron 7.8 % 22.0 % 2.8

4-D Closed Form 29.2 % 34.9 % 1.2

Closed Form 2 29.2 % 34.3 % 1.2

Perceptron

2-D Closed Form

Closed Form 2

13.2 %

33.1%

26.1%

21

33

27

.0%

.1%

.6%

.6

.0

.i

15

16

It might be argued_ that the value of the perceptron algorithm lies in its ability to provide a lower bound on the minimum
number of classification errors.

If we were using a different statistic to measure the consistency this might not be the case. For instance, the num .ber of
errors weighted'by the size (difference in utility) of each error might be more favorable to the Utility model. This is the
measure hrntema & Klem used, but they were only comparing utility models with one another. We do not have a
measure of "difference" which is consistent for both utilhy and discriminant function models, so we cannot easny
compare the two with such a statistic.
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In order to test the generality of the models, each person's models were used to mimic

the decisions of the other subjects. The results appear in Tables A1-A7 in Appendix A,
and are summarized in Table 2 below.

The ideal model would combine low within-subject error rates with low between-sub-

ject error rates. Figure 8 shows these error rates.

Figure 8: Average be-

tween-subject error plotted

against average within-

subject error for each of the

7 models. A regression line
(solid) is shown, as is the

line y=x (dashed). Models

should not (except by
chance) lie in the shaded

region, where they would

be better predictors of

other subject's data. A

completely general model
would lie on or above the

line y=x near the origin.

r2=0.8_1

0 0 s"
d ¸

d"

/,
L.I.: ¸ :::-:::! !

10 20 30 40

Within-Subject Errors (%)

6.3 A Subjective Measure of Difference

The subjective "degree of difference" value recorded in the utility assessment experi-
ment should be a measure of the ease of the decision between the two alternatives.

This measure was plotted against difference in utility in the case of the utility model,

and against distance from the decision plane for the other models. Surprisingly, there

is little correlation between any of these measures. Efforts to correlate the subjective

difference with the difference in distances alone produced similar results. This rather

surprising result warrants further investigation (see Section 7.1 for a description of an

improved experiment).

Table 3: Correlation coefficients for linear relationships between objective distance mea-

sures and subjective difference between the alternatives, using the following objective mea-
sures of distance: (i) for utility model, distance = difference in utility; and (ii) for discrirni-
nant function models, distance = distance

Subject

Utility Model

Perceptron
4-D Closed Form

Closed Form 2

2-D

from decision plane.

D H P

-0 .0336 0. 0486 0. 1217 0. 0889

0.0202

0.0859

0.0813

.0195

Perceptron
Closed Form
Closed Form 2

0.0625

0.0264

0.0093

0.0874

0.0630

0.0074

0.0212

0.0157

0.2053

0.2900

0.2625

0.0016

0.2538
0.2166

R

0.0154

0.2265

0.2115

0.0157
0.1219

0.0989

Average

5.6%

6.5%

16.6 %
14.5 %

0.9%

12.1%

9.9%

Note that the basic closed-form algorithm consistently produced the best results.
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7 Future Work I

7.1 An Improved Utility-Estimation Experiment

It is possible that the experimental data obtained in the strategic decision experiment
outlined herein were compromised by the lack of realism in the experimental setup.
We feel that a graphical presentation of the alternatives might encourage more care
and consideration in the responses. Accordingly, we are writing a portable version of
the experiment to run on" a Macintosh PC. The prototype of the display is shown below
in Figure 9.

Figure 9: The display for
the Macintosh-based

Utility-assessment exper-
iment. The subjects will be

presented with a fresh
window, like this one, for
each decision. After con-

sidering the range and
ceiling information pre-
sented for each alternate

airport, they will click on
the desired one, and will

then use the mouse to place

the pointer (+) at the ap-
propriate location to indi-

cate the subjective "degree
of difference".

• 1000'

OeSt.• /

300 nm

500' • _ /
150 nrn

\

_ J

0 • 7

I • I

We expect that with this setup we will be able to obtain more accurate data, and may be
able to examine the issue of the subjective "degree of difference" more carefully.

7.2 Improvements to the Analysis

The following might be done to further examine the data already obtained:

(i) Incorporate a measure of asymmetry into the discriminant function analy-
ses m each of the algorithms should be insensitive to the order in which the

alternates was presented (except for the direction of it's output). This was
clearly not the case.

(ii) It would be interesting to perform Multi-Dimensional Scaling (MDS) on the
decision data, but this must wait for better subjective degree of difference
data, which we hope to acquire from the experiment outlined in Section 7.1.
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(iii)The interpolation of the subsidiary utility scales was done linearly. Several

alternative algorithms were tried on the data, but were unsatisfactory. For

instance, when a cubic spline was fitted through the data, the resulting util-

ity was no longer always monotonically increasing, and was not always posi-
tive for some of the subjects! A more interesting curve-fitting algorithm is

required.

(iv) What does the utility surface look like in 4-D? It's meaning? Results?

(v) We would like a method of learning the utility function from the ordinal
information contained in the paired comparisons, rather than from the car-

dinal information contained in the separate assessment used in our exper-
iment.

(vi) We would like to be able to fill out the following table, using numerical

measures of the degree to which each model possesses each property.

Table 4: Properties of various models of human decision-making.

Non-linear Discriminant Rules Utility

NN's Functions

General ?

Simple 4 4

Normative 4

Predictive 4 4 4

Tractable _ _ 4

Insightful ? 4
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8 Future Work II m A Dynamic Decision-Making Experiment

8.1 The Experimental Task

I am currently designing an attention-allocation experiment, in which a subject pilot

will maneuver an aircraft along the center of a "lane". The subject will not, however,

know his position relative to the center-line of the lane, only relative to the tangent to

the centerline at a previous point in time -- the last point of information acquisition.

The task is shown below in Figure 10.

Figure 10: The experimental task: flying along a curved path. The pilot would like to fly
along the dotted centerline, but only knows his position relative to the tangent to the cen-
terline at the last point of "updating'.

In this experiment, the pilot is essentially choosing between two competing tasks. He

must either (i) pilot the vehicle manually along the current tangent (and risk being on

a poor track which will lead outside the protected path), or (ii) update the tangent (and

pay the penalty of having the compensatory display frozen for _ seconds while the tan-

gent-track is updated). The relevant variables are depicted in Figure 11.

Figure 11: Control variables, x is the lateral displacement of the aircraft relative to some
datum, r and P are the positions of the real target (the center-line) and the tangent, respec-
tively, relative to the same datum, e and _ are the aircraft's position errors relative to the
center-line and the tangent respectively.

i

m

r
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r
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8.2 The Displays

The visual display, shown in Figure 12, is compensatory, as are many cockpit naviga-

tion displays (e.g. VOR and ILS). A rate display, such as a turn-coordinator, is also pro-

vided to aid the pilot in the secondary [manual control] task.

Figure 12: The visual display in its two modes (i) as a compensatory tracking display, and
(ii) in the track update mode (note that the tracking display is temporarily grayed out).

I h
III111111 IIIIIII!

-o 0 ÷a

-a 0 ÷a

8.3 The Vehicle Model

The vehicle is modelled as an unstable or marginally stable system, with noise added to

the control input, as shown in Figure 13 below. In this way the subject's attention must

be focused on the control task in order to achieve good control performance. The de-

gree of instability and amount of noise will be adjusted to provide the required level of

difficulty.

Figure 13: The vehicle dynamics

Pilot

noise

H(s)

Aircraft

x

The aircraft transfer function, H(s), currently modelled is

H(s)= x(s----2)= r . [51
u(s) s(s-a)

Since it must be simulated digitally on the PC, a backward-difference discrete approxi-

marion for the Laplace operator, s:

z-1
s _ _, [6]

zT
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was used to determine the corresponding discrete transfer function between the control
action and the vehicle state:

H(z) = x(z) = KT2z
u(z) z2(1-aT)+ z(-2 +aT)+ l

This transfer function is then coded as the following difference equation:

x k = (2 - aT)xk_ _ + (-1 + aT)xk_ 2 + T2K.uk_2. [8]

8.4 Scoring

At first, the costs will be made very explicit, so that we can test the optimality hypothe-

sis. The subject's penalty for deviation from the curved path will be either: (i) a con-

stant penalty, integrated over the time the aircraft is outside the lateral boundaries of
the course:

J = CJ _o_u. dt [9]

or (ii) a relatively severe penalty, accrued only very occasionally (probabilistically) when
the vehicle is outside the boundaries of the lane.
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Appendix A -- Tables

Tables A1 through A7 show the percentage errors obtained when each model is applied
to each data set.

Table AI: Percentage errors for the Utility model.

Model

D

H

P

R

Data

D H P R

29.0 47.2 42.4 43.3

32.3 13.9 9.1 i0.0

19.4 25.0 6.1 3.3

12.9 16.7 21.2 13.3

Table A2: Percentage errors for the Perceptron, 4-D model.

Model

D

H

P

R

Data

D H P R

22.6 41.7 12.1 16.7

25.8 5.6 9.1 i0.0

32.3 30.6 3.0 13.3

35.5 33.3 3.0 0.0

Table A3: Percentage errors for the Closed-form, 4-D model.

Model

D

H

P

R

Data

D H P R

41.9 47.2 30.3 40.0

45.2 33.3 27.3 30.0

45.2 33.3 18.2 23.3

45.2 33.3 18.2 23.3
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Table A4: Percentage errors for the Closed-form, improved, 4-D model.

Model

D

H

P

R

Data

D H P R

41.9 38.9 36.4 43.3

45.2 33.3 30.3 30.0

38.7 25.0 18.2 23.3

48.4 33.3 18.2 23.3

Table AS: Percentage errors for the Perceptron, 2-D model.

Model

D

H

P

R

Data

D H P R

25.8 30.6 6.1 13.3

29.0 13.9 6.1 I0.0

38.7 41.7 3.0 13.3

32.3 25.0 6.1 i0.0

Table A6: Percentage errors for the Closed-form, 2-D model.

Model

D

H

P

R

Data

D H P R

48.4 36.1 21.2 26.7

48.4 36.1 21.2 26.7

48.4 36.1 21.2 26.7

48.4 36.1 21.2 26.7

Table A7: Percentage errors for the Closed-form, improved, 2-D model.

Model

D

H

P

R

Data

D H P R

35.5 30.6 15.2 20.0

38.7 30.6 12.1 16.7

45.2 36.1 18.2 20.0

41.9 36.1 18.2 20.0
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Appendix B -- Plots

Figure BI: Difference in Utility plotted against Subjective Difference for the four subjects
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Figure B2: Distances from Decision Plane plotted against Subjective Difference in alterna-
tives for the 4 subjects. Case: 4-D decision model, Perceptron solution. Correlation coeffi-
dents shown.
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Figure B3: Distances from Decision Plane plotted against Subjective Difference in alterna-
tives for the 4 subjects. Case: 4-D decision model, closed-form solution. Correlation coeffi-
dents shown.
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Figure B4: Distances from Decision Plane plotted against Subjective Difference in alterna-
tives for the 4 subjects. Case: 4-D decision model, closed-form 2 solution. Correlation coef-
ficients shown.
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Figure B5: Distances from Decision Plane plotted against Subjective Difference in alterna-
tives for the 4 subjects. Case: 2-D decision model, Perceptron solution. Correlation coeffi-
dents shown.
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Figure B6: Distances from Decision Plane plotted against Subjective Difference in alterna-
tives for the 4 subjects. Case: 2-D decision model, closed-form solution. Correlation coeffi-
dents shown.
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Figure BT: Distances from Decision Plane plotted against Subjective Difference in alterna-

tives for the 4 subjects. Case: 2-D decision model, closed-form 2 solution. Correlation coef-
ficients shown.
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